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SUMMARY 

A computational procedure for compressible axisymmetric boundary layers, on bodies of revolution, in 
transition from laminar to turbulent flow, is introduced. The procedure is an extension of a former 
method, due to Patankar and Spalding. 

The flow field is computed by solution of four simultaneous equations for the momentum, the 
thermal energy, the turbulence energy amplitude and the turbulent scale. 

The results show good agreement with existing theoretical and experimental data. 
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1. PREFACE 

1 .1 .  Introduction 

This paper describes an improved method for the numerical computation of compressible 
axisymmetric boundary layers, around bodies of revolution, in transition from laminar to 
turbulent flow regime. As the heat and mass transfer coefficients between solid bodies and 
flowing fluids, in laminar or turbulent regimes, differ significantly from one another, the 
problem may be very important. For instance, in supersonic flow, where the aerodynamic 
heating plays an important role and may restrict the flight velocity or determine the structure 
and materials of the body, the flow regime has a major influence on the design. Good 
estimate of the transition point enables correct evaluation of the heat transfer and optimal 
design of the body. 

The lack of basic theoretical comprehension and sufficient experimental data, imposes the 
use of approximate turbulence models while the complexity of the equations calls for 
T
Ng’s turbulence model,’ are extended to the computation of laminar, turbulent and transi- 
tional flow fields. The methods enables computation of the transition point, and the flux of 
momentum and energy through the solid wall, with second-order accuracy. Yet, this work 
does not attempt to explain the mechanism of transition from laminar to turbulent flow, and 
the set of constants and functions used to describe transition should be regarded as empirical 
information. 

The present turbulence model implies that the transition phenomenon is dependent on 
disturbances in the potential flow, as well as the Reynolds and Mach numbers and the 
pressure gradient. The turbulence and the disturbance are characterized by the amplitude 
and the length scale. The purpose of the computation, is to find the influence of these 
properties on transition. 
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1.2. Literature review 

The influence of the flow regime on the heat transfer rate is known in the literature. Kays 
and Leung3 computed a turbulent channel flow with a Prandtl number of 0.7. The heat 
transfer rate computed for turbulent flow is between 7 and 259 times larger than the heat 
transfer rate for laminar flow at the same Reynolds number. Comparison of laminar and 
turbulent heat transfer in incompressible boundary layers with a Prandtl number of 0.7 is 
reported by Kays," who recommends for laminar flow 

Nu, = 0.295 Re:'' 

Nu, = 0.238 Re:" 

It is obvious that for Re, >4SOO the Nusselt number in turbulent flow is significantly higher 
than in laminar flows. Similar results for a compressible boundary layer were obtained by van 
Driest' and Deissler and Loeffler.6 

Despite the importance of the subject, the prediction of the transition point is still difficult, 
and an adequate theory is still lacking. Furthermore, experimental results are inconsistent 
within themselves, and the characteristics of transition-causing disturbances is not reported 
in many experiments. This situation is reviewed by Reshotko7 and Mork~vin. '~~ 

A surprising aspect of the existing experimental data is the possibility of getting good 
correlations within distinct groups of experiments, when the flow is characterized by the 
dimensional 'Unit Reynolds Number' defined as 

and for turbulent flow 

- PU 
F 

This indicates the existence of a length scale (typical to the experimental apparatus perhaps), 
by which a disturbance Reynolds number might be defined. Some such scales were proposed 
in the literature: Reshotko" related the length scale to the length corresponding to the 
slowest disturbance waves, as calculated from the linear stability theory. Emmons" and 
Nagel'' related the length to the distance between the 'heads' of Tollmien-Schlichting waves 
where sudden local bursts of turbulence appear. Another assumption was that the distance 
between wave 'heads' depends on the intensity of turbulence in the potential flow. Pate13 had 
a different approach: He assumed, following Laufer,14 that the acoustic waves transmitted 
from the walls of supersonic wind tunnels are the major sources of transition-causing 
disturbances. The correlation suggested in his paper was between the transition Reynolds 
number and the thickness of the acoustic wave-generating boundary layer. 

In the light of this discussion, it seems that the transition location is determined by the 
characteristics of the disturbances outside the boundary layer. Consequently, transport of the 
amplitude and the length scale of fluctuations from the main flow should be computed. Such 
computation should be based on solution of adequate differential equations, e.g. for the 
turbulent energy and for the length scale. This approach is difficult in reality, as it requires a 
good turbulence model as well as computational methods. As a result, the researchers 
generally use simplified approaches, attempting to characterize disturbances by one parame- 
ter only, or by empirical correlations. Thus, Harris" computed the transition point by 
empirical formulae, while Reshotko," Nagell' and Patex3 characterized the transition 
location by the length scale of the disturbances only. 

A different approach was developed by Shamroth and McDonald'' and McDonald and 
Fish17 who related the disturbances to the amplitude of the fluctuations, and computed its 
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diffusion into the boundary layer by solution of the turbulent energy equation. 
Donaldson’’ used a similar approach, solving for the Reynolds stresses in the boundary 
layer, in the transition area. 

The common disadvantage of all these works lies in the fact that none of them tried to 
compute the diffusion of both the turbulent energy and length scale into the boundary layer. 
In the present research, an attempt was made to perform such a computation. Success of this 
approach depends on the development of a low turbulence two-equation model, to be 
coupled with one of the available models for turbulent boundary layer calculations. 

Ng,’ Wolfshtein,’’ and Rotta” solved the equations for the turbulent energy and scale. 
Jones and Launder2’ and Harlow and NakayamaZ2 replaced the scale equation by an 
equation for the dissipation of turbulent energy into thermal energy, while GlushkoZ3 solved 
an equation for the square of the scale, and SaffmanZ4 and Wilcox and Alber,25 solved an 
equation for the fluctuation vorticity. Wolfshtein et aLZ6 showed that all these models have a 
similar general form, differing mainly in some empirical coefficients. Nonetheless, their 
models differ from one another in the low turbulence approximation, required in the viscous 
sublayer near the wall, and in the numerical techniques used to obtain a solution. 

For the present work, a model that contains Ng’s turbulence scale equation’ was chosen, 
mainly because this model is well documented, and shows favourable agreement with a large 
number of turbulent boundary layer experimental data. 

1.3. The present work 

Computation of the flow field in transition from laminar to turbulent regime, is performed 
in this work by solving the equations for turbulent energy and its scale, together with 
equations for the momentum and thermal energy. The turbulence model is based on Ng’s 
work2 with Wolfshtein’s modifications.” 

A modified Patankar and Spaldingl numerical method is used. The present method is of 
second order. In order to account for strong gradients near the wall (particularly in turbulent 
flow), transformations of the lateral co-ordinates are applied, so as to condense the grid 
points near the wall. Thus, the wall functions used in Reference 1 are r em~ved . ’~  

The present method was successfully tested for laminar, turbulent and transitional flows, 
for compressible and incompressible cases, on a flat plate, without pressure gradient, and on 
bodies of revolution. The numerical properties of this method were discussed by Berger et 
a ~ . 2 7  

2. MATHEMATICAL FORMULATION 

2.1. The co-ordinate system 

A curvilinear orthogonal co-ordinate system is convenient for boundary layer calculations 
near the surface of bodies of revolution. In such systems the x-axis is parallel to the body 
surface, while the y-axis is normal to the body. An illustration of the system is presented in 
Figure 1. The flow region of interest lies between the internal wall, designated by the 
subscripts ‘w’ and the external boundary designated by ‘m’, or by ‘E’. Two parameters define 
the body curvature: 

(i) r-the distance between the axis of symmetry and the point under consideration. 
(ii) a-the angle between the tangent to the surface y = const. and the axis of symmetry. 
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Figure 1. Co-ordinate system 

Obviously, the radius in a particular point is given by: 

r = r,,, + [ [cos a(q) dq] 
x =const. 

When the thickness of the boundary layer, 6, is small relative to the radius of the body 

6 -<< 1 
rw 

equation (l), degenerates to: 

(This simplification is not used in subsection 2.2.) 
The present work is limited to cases in which the angle of attack, between the main flow 

and the axis of the body, is zero. In this case the flow is axisymmetric, and the equations 
are two-dimensional, in the sense that there are only two independent variables (x, y ) ,  
as defined above. 

r = r,,, = r ( x )  

2.2. The governing equations 

energy, for a steady boundary layer, are 
2.2.1. The conservation equations. The conservation equations for mass, momentum and 

a a - (pur) +- (pur )  = 0 
ax aY 

a u  au ap 1 a ( ;;) 
ax a y  ax r a y  

p u - + p v - =  --+-- p e f i r -  

The unknowns in these equations are the velocity components u and v, and the stagnation 
ethalpy ho. Equations (2b) and (2c) are parabolic partial differential equations. 

2.2.2. The initial and boundary conditions. The momentum and energy equations need the 
usual boundary conditions. The velocity is zero on the wall. Outside the boundary layer the 
velocity is equal to the specified potential velocity, u,. 
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The enthalpy outside of the boundary layer is determined by the solution of the external 
flow, which is usually an isentropic solution. Other boundary conditions can be applied as 
well. On the wall two boundary conditions for energy are possible: Either a given heat flux 
or a given temperature. In the present work an adiabatic wall is assumed, with ( d T / d y ) ,  = 0. 

For the solution of parabolic equations, initial profiles of the variables are required. These 
initial profiles can be obtained from experimental data, empirical relations, approximate 
theories or guesswork. In this work the Karman-Pohlhausen velocity profile and the Crocco 
temperature-velocity relation are used. Details of these profiles are given below. The initial 
boundary layer thickness a0 should be specified as well. 

2.2.3. The thermodynamic relations. The presure p ,  is usually determined by the external 
flow conditions. Other thermodynamic properties are computed by the following auxiliary 
relations: 

U 2  
ho-- 

2 T=- 
CP 

where pr is the air viscosity at temperature TR and 

T, = 110°K 

W = 28.8 kgmlkg mole 

cp = YR/KY -- 1) WI (6) 

The universal gas constant is R = 8.317 J/mole"K and the specific heat ratio is y = 1.4. 
The effective viscosity is the sum of the laminar and the turbulent viscosities: 

Peff = P + P* (7) 

The calculation method of p, is described in the next section. 

2.3. The turbulence model 

2.3.1. The governing equations. The turbulence model that is used in this work was 
proposed by Ng.2 In this model, the turbulence is defined by the turbulent energy e and its 
scale I ,  which are defined as follows: 

- - -  
e = ~ ( u r 2 + v r 2 + w f 2 ) =  

where k is the wave number and E(k)  is the one-dimensional spectral distribution of the 
energy. 
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The governing equations for e and 1 are: 

De a 
Dt tiy 

D(e1) a 

The turbulent viscosity is given by: 

and F4 is defined as: 

F4 = ( C4 f)" 
The constants C,, C1, C,, C,, C4, we, q, q, were chosen by Ng in order to get good 

agreement between the theory and a large number of turbulent boundary layer flows for 
which reliable experimental data is available. For a low turbulence level the functions, f,, fi, 
f2, f3, f4 were added following W~lfshtein.'~ These 
turbulence level. The turbulence level is estimated by 

pe ' 121  
Re, =- 

EL 

The functional form of f,, fi, f2, f3, f4 is as follows: 

f, = 1-exp (-A,Re,) 
f l  = 1 -exp (-A,Re,) 

f2 = 1 -exp (-A,Y+) 

functions approach unity at a high 
the turbulent Reynolds number: 

Y J h W P )  
Y+=- 

EL 

The empirical constants A,, A*, A2, A3, A4, t are chosen to obtain the best agreement with 
experimental data. The values are summarized in Table I, together with the other constants, 
which are identical to Ng's recommendations. 

Table I 

C1 = 0.09 Al  = 0.892 a, = 1 
C2 = 0.98 A2 = 0.038 u, = 1 
C3 = 0.058 q = 6  

A4 = 0.855 t = 4  
c, = 1 A, = 0.127 K = 0.41 
C4 = [(KC:I4+ CtC2- C3)/CJ'6/KC:14 
A3= (5.2169- 1*9602/A:)-' 
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2.3.2. Initial and boundary conditions, and auxiliary relations. On the wall, both e and el 
are set at zero. On the external boundary they reach the main flow values. Sometimes a 
prescription of uniform values for e and 1 is sufficient. However, a better estimate is obtained 
by the solution of the homogeneous flow form of equations (8a) and (8b), namely 

312 de, -=cl--- e, 
ax UJ, 
a 1, e ,  - = (C,  - C3) - 
ax U, 

112 

The initial profiles for e and el are discussed below. The effective Prandtl number ueff is 
given by 

Y Yt -+- 
1 u 0; 

c e f f  Y + &  
__- -- 

where cr, crt are the effective laminar and turbulent Prandtl numbers respectively. 

2.4. Transformations and final formulations 

2.4.1. General equation. The equations of momentum (2b), thermal energy (2c), turbulent 
energy (8a) and length scale (8b), have a similar form. This can be utilized in order to obtain 
a single procedure for their solution. First, we write an equation for a general variable 4: 

where 4, I‘ and s are given in the following table: 

Table I1 

Equation no. (b r S 

U Pef f  

The effective Prandtl number is given by equation (16) above. 

2.4.2. Co-ordinate transformations. The (x, y) co-ordinates system is not very convenient 
for numerical calculations. An ideal co-ordinate system would cover the important parts of 
the flow field, with stretching in special regions. In particular the following properties appear 
very desirable: 
(i) The cross-stream co-ordinate should vary between zero and unity. 
(ii) The continuity equation should be uncoupled from the momentum equation. 
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(iii) The cross-stream co-ordinate should be linear and dense in the region of steep 

(iv) The final equation should be as simple as possible. 
A co-ordinate system which satisfies these requirements is obtained through the following 

gradients near the wall. 

stages : 

2.4.2.1 Patankar-Spalding transformation 

transformation is defined as follows: 
A transformation from (x, y) to (x, o) was suggested by Patankar and Spalding.' The 

where 

or in the usual way 

9 
9E 

w=-- 

9 = [ [Pur dY] x =const 

a9 pur =- 
aY 
aJ, -pvr = - 
ax 

and $E is the value of the stream function at the edge of the boundary layer. In this 
co-ordinate system, the continuity equation is satisfied automatically because of the use of 
stream function co-ordinates. 

The general equation (17) transforms to the form: 

where 

S d = -  
P U  

For the velocity: 

For the stagnation enthalpy: 
a = a h  

The (x, o) co-ordinates are similar to the von Mises co-ordinates, but while the von Mises 
cross-stream co-ordinate, 9, can vary without limit, o is bounded between zero and unity. 
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The form of the equation is slightly more complicated than the von Mises equation, having 
an additional term in the left-hand side of the equation. 

One important property of the von Mises co-ordinates, namely the automatic guarantee of 
continuity is kept here as well. Thus, the normal velocity, v, is not needed during computa- 
tion. Moreover, the grid is absolutely self-adaptive to the thickness of the boundary layer. 

2.4.2.2. Elimination of the wall singularity 
The transformation to (x, o) was revealed to be unsuccessful near the solid wall for 

laminar incompressible where the velocity is given by 

u = cy (24) 
substitution of (24) in (18) and (19) gives 

w=-y2 C 

24E 
y + 2 )  0.5 

Consequently a Taylor series expansion (which is the basis for finite difference approxima- 
tion) of u in o, does not exist near the wall. The normal derivative of the velocity near the 
wall, with respect to o, becomes 

Theref ore 

0-0 lim (g)=- 
This uncontrolled growth causes gross inaccuracy in the computation near the wall. 
Moreover? the finer the mesh the larger the error associated with this singularity. Berger et 
aLZ7 resolved the problem by the following transformation: 

Now, near the solid wall (y = o = z = 0)  

and the problem is solved. 
Under this transformation the general equation (21) has the following form: 

- + - z  -=-- ( -- " ) + d  84 b ad, 1 a 
ax 2 az 2232 2 z ~ a . 2  

2.4.2.3. Co-ordinate stretching 
The transformation from (x, o) to (x, z )  co-ordinates, gives good solution for the laminar 

case. The scaling of the stream function between zero and unity, which is invariant through 
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the transformation to (x, z ) ,  enables the use of a finite differences grid which covers all the 
boundary layer, without 'wasting' points on the potential area. 

Unfortunately, the self-adaptive grid created in this way is inefficient for the turbulent flow 
calculations. In this flow, strong velocity gradients occur in the viscous sub-layer, in the 
vicinity of the solid wall. This layer is very thin in comparison to the whole layer, and 
uniform distribution of the grid points in z causes the second mesh point to move out of that 
sub-layer. Patankar and Spalding' solved this problem by the use of wall functions and 
fictitious points near the wall. However, this practice resulted in the loss of the second-order 
accuracy. Another possibility is to enlarge the number of grid points. Yet, this would have 
made the computer time demands very severe, and would have reduced the efficiency of the 
program. (Two thousand grid points in the lateral direction were found to be still insufficient 
for good accuracy in the viscous sublayer.) 

As a result of this difficulty, a variable grid with a small mesh size in the vicinity of the 
solid wall is required. Indeed, the transformation to (x, z) causes a certain condensation of 
the mesh near the wall, but this is not sufficient, and the following transformation to (x, 5 )  is 
proposed. 

where A is a constant chosen for numerical efficiency, and is discussed in subsection 3.3 
below. The transformed co-ordinate, 5, varies between zero and unity. On the wall 

y = o = z = f ; = o  

w = z = 5 = 1  
and on the potential flow boundary 

so that 

Near the wall the velocity is linear in z, and for z * 0 

Thus the singularity problem does not arise in the computation. 
Under this transformation the general equation is: 

where 
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The singularity of A near the wall ((=O) causes extreme stiffness of equation (32). This 
dictates the use of special implicit schemes, as discussed by Berger et ~21 . :~  to avoid 
oscillations. The simplest such scheme is the first-order fully implicit scheme described 
below. The source terms are given by: 

The initial profiles are prescribed in terms of the transformed normal co-ordinates, z or (. 
Two possibilities arise: for laminar or transitional boundary layers, laminar initial profiles are 
prescribed. For turbulent boundary layers, turbulent initial profiles are required. The initial 
laminar velocity profile is approximated by the Karman-Pohlhausen profile: 

U 

U, 
- = F ( z )  + hG(2) (34) 

where z varies between zero on the wall and unity on the potential flow boundary. For 
adiabatic wall the temperature is related to the velocity by the Crocco integral: 

where rf is the recovery factor and the enthalpy is given by 

h*=c,T+(-y) U 2  

The turbulent properties are: 

L = (+)z (37) 

The parabolic turbulence energy distribution represents a very low level of turbulence, and a 
low turbulent viscosity, as expected when the flow is laminar. 
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For fully turbulent flows initial turbulent profiles are required. The turbulent velocity 
profile is based on the seventh power low velocity profile 

In this case the initial turbulence energy may be approximated by 

where 
0.5 

eM= 3 . l ~ u f [ ( l + O . 8 8 ( ~ ) ] u ~ c ,  7-1 

eE = ctuf = ( u ’ ) ~  

The length scale profile is 

The temperature and stagnation enthalpy are given by equations (35) and (36) as in the 
laminar case. 

3 .  THE NUMERICAL METHOD 

3.1. Generut description 

The set of simultaneous equations with suitable boundary conditions and auxiliary rela- 
tions, is solved numerically. This is done by solving the equations one after the other, using 
the same procedure. For this reason, it suffices to discuss here the solution of the general 
equation (32). This equation is parabolic and non-linear. Patankar and Spalding’ solved such 
equations using an implicit method, and wall functions and fictitious points to account for the 
region adjacent to the wall. Their method, which was used in the first stage of the present 
work, is of first-order accuracy at most. In the present research second-order central 
differences are used in the normal direction, and wall functions are not applied. 

For the streamwise direction a forward derivative is chosen, so the accuracy in this 
direction is of first order. This accuracy is sufficient because in boundary layer problems, the 
variation in the mainstream direction is much slower than the variation in the normal 
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direction. The finite difference equation for the general equation, is obtained by integration 
over small control volumes, around the grid points. The resulting equation is: 

where h and k are the grid sizes in the 5 and x directions. The source term is split into two 
parts 

where s , , ~  and s , , ~  are computed upstream. For numerical reasons, it is preferable to make 
s , , ~  as small as possible. 

d l  = %,U + s ~ , D 4 ~ ,  D (43) 

Equation (42) has the general form 

4, = Ac+,+, +B,41-, + c, (44) 

I t  is apparently implicit, but the implicitness is only partially complete, for A,, BE, C, are 
usually functions of 4, while the solution method assumes they are given coefficients 
(computed according to the upstream 4 values). Thus it is necessary to use small integration 
steps in order to obtain good accuracy, although stability is independent of the step size 
because of the implicitness of the method. 

The coefficient matrix of equation (42) is three-diagonal, and is solved using the Thomas 
algorithm. Equation (42) can be written in the form: 

%.U#r + l ,D  + 8 c,U#t-l,V = Yi,U#i,D + a ~ , v  (45) 

The condition for stability is 

This condition is always satisfied for the finite difference form of equation (42). However, 
when injection (or suction) is applied, equation (42) should be modified, and condition (46) is 
not satisfied. In  such cases it is necessary to use upwind first-order finite differences to ensure 
stability. 

3.2. Treatment of source term 

The source term has two components: one is calculated at the upstream integration step, 
while the other is a linear function of the present value of 4. Stability and accuracy are 
usually improved when SL,U is minimized. The source terms. as defined in equations (17) and 
(21c) are given below. 

For the momentum equation 

Si.D = 0 
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For the stagnation enthalpy, 

ho,i,D = 0 
The equations for the turbulent energy and the scale require more careful treatment. Here 

splitting of the source terms is somewhat complex due to the non-linearity of the sources. 
Yet careful examination reveals that the dissipation may be separated from the generation, 
to give, for the turbulent energy: 

and for the turbulent scale: 

In order to prevent numerical instability of the length scale equation near the solid wall, as 
a result of the quick growth of F4, which contains a sixth power of (Uy), the following 
limitation was set on F4 

F4 
(C2f2--).0 f4 (5 1) 

This limitation is met by application of the following condition near the solid wall 

1 I KC:I4y (52) 

which is the solution of the length scale equation for a one-dimensional logarithmic 
boundary layer. 

3.3. Mesh stretching and grid size 

As mentioned above a stretching transformation (29) was necessary to ensure sufficient 
accuracy near the wall. The transformation was chosen so as to satisfy the following 
requirements: 

(a) At least half the grid points should be in the first per cent of the boundary layer width. 
(b) A reasonable number of points should be near the potential flow boundary. 

Following these requirements the p coefficient of the transformation was chosen 

p = 0.001 

The number of the grid points is chosen so as to give a good description of the viscous 
sub-layer. In order to find the necessary number of points, incompressible flow on a flat plate 
without pressure gradient was studied. The number of points varied between 30 and 200. 
The resulting transition Reynolds numbers, based on the displacement thickness, are 
presented in Figure 2. It appears, that for 120-150 grid points, variation of the number of 
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Figure 2. The effect of the number of mesh points on the Reynolds number of 
transition from laminar to turbulent flow, on a flat plate, without pressure gradient 

mesh points caused a small difference, but for N >  150, oscillations of the solution appear, 
apparently by the computer round-off error. Therfore, a 150-point grid was chosen, in order 
to get the optimal accuracy. This number is not too large, and the price of the computations 
is not prohibitive. 

The integration step in the x-direction is limited by the following conditions: 

Ax 5 612 (534  

Both conditions may be justified on physical grounds. Their aim is to limit the boundary 
layer growth per step, either by comparing the grid size to the boundary layer thickness or by 
comparing the entrainment per step to the total mass flow in the boundary layer. 

3.4. The skin friction 

The friction coefficient on the wall is defined as 

with 

These four derivatives are calculated in the following way: 

(i) The derivative of the velocity near the wall is calculated to second order by a one-sided 
formula. Denoting the finite difference mesh point on the wall as point number 1, and 
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recalling that u1 = 0, we may write 

(ii) The second derivative in equation (55)  is obtained from equation (29) as 

dt; A tg(I/A) -= 
dz 1 + z2 tg2(1/A) 

(iii) The third derivative is singular near the wall: 

dz 1 
z-odw z - 0 2 ~  
lim - = lim - 

Therefore we have to calculate: 

d z a o  dz 1 pur p r  u --=-=--=-- 
dway dy 2 Z  $E ~ $ E Z  

but near the wall u is linear in y or z to second order and therefore 

Therefore 

(57) 

3.5. Calculation of the normal distance, y 

computed according to the chain rule using (18), (208), (26) and (29): 
The normal co-ordinate y and its derivative depend on p ,  u, r, t;. The derivative is 

The following fourth-order integration algorithm is used to calculate y : 

yi = y i - , + 2 h [ i ( 2 )  6 at; i +"2) 3 at; i-1 6 at; i-2 ] + O ( h " )  

3.6. Scope and capabilities of the method 

The method may be used to solve the flow on a body of revolution with any particular 
geometry. The local body radius and the velocity, temperature, and pressure in the potential 
flow outside the boundary layer should be specified. For planar flows, the invariant body 
radius, which is much bigger than the boundary layer width, should be specified. Two types 
of initial conditions, with laminar or a turbulent initial profiles, are possible. The laminar 
initial profiles are based on the Karman-Polhausen profile while the turbulent profiles are 
based on a seventh-power velocity profile. In both cases, the effects of compressibility on the 
initial velocity profile are neglected. The initial temperature profile depends on the initial 
velocity according to the Crocco integral. In both cases the initial width of the boundary 
layer should be determined. 
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4. RESULTS OF THE COMPUTATIONS 

The turbulence model, numerical method and computer program described above were used 
to obtain solutions to various problems of transitional flow on a flat plate. The main 
parameters affecting transition in such a flow are the main stream Mach number, M, the 
main stream turbulence intensity 

112 

U ,  

e ,  
c k  =- 

and the main stream length-scale Reynolds number 

p,u,L- Re, =- 
EL- 

These parameters vary slowly in the x-direction and therefore they are prescribed at some 
reference point, e.g. the initial step. It should be pointed out that Re, is not usually reported 
in the experimental literature while many experimental data on the influence of ck and M on 
transition are available. Moreover, the present length scale L is only proportional (and not 
identical) to the macro-scale. Still the influence of the scale may be studied as is shown 
below. 

4.1. Validity of the model 

The present numerical scheme is based on that of Patankar and Spa1ding.l The major 
difference is the discarding of the wall functions. Typical results are given in Figures 3 and 4, 
where the variation of the transition Reynolds number and skin friction coefficient with the 
number of mesh points in the lateral direction N is shown, respectively. Both figures indicate 
satisfactory second-order convergence. 

Figure 3. Variation of the transition Reynolds number in incompressible flow, 
on a flat plate, without pressure gradient, versus the number of mesh points 
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The present turbulence model is an extension of Ng’s2 model to regions of low turbulence 
level. At a higher turbulence level the two models are identical. Therefore we may expect 
identical results in the fully turbulent region, far downstream of the transition point. Near 
the transition point the behaviour of the boundary layer is very sensitive to the initial and 
boundary conditions and therefore the present computations should differ from Ng’s results 
in this region. This is clearly shown in Figure 5 ,  where the skin friction coefficient, C, is 
plotted versus the momentum thickness Reynolds number, on a flat plate. The agreement 
with Ng’s results at high Reynolds numbers suggests that the present turbulence model is as 
good as Ng’s model, which has been compared with a large number of experimental data. 

4.2. Transition calculations 

For a zero pressure gradient the transition Reynolds number depends on the disturbances’ 
amplitude and scale, and the Mach number. The disturbances’ amplitude is defined as the 
value of turbulence energy in the potential flow em. Experimental and theoretical studies 
show that transition from laminar to turbulent flow depends on the disturbances in the 
potential flow. Calculated values of the transition Reynolds number, based on displacement 

thickness (S* = [( 1 --s) d y), are plotted versus the turbulence intensity for incompres- 

sible flow in Figure 6. In these calculations the scale Reynolds number is Re, = 211. The 
computed results are in good agreement with experimental results collected by McDonald 
and Fish.17 The influence of the length scale Reynolds number, Re,, on transition is shown in 
Figure 7, where the transition Reynolds number is plotted against the length scale Reynolds 
number for incompressible flow on a flat plate. As may be expected the transition Reynolds 
number decreases when Re, increases. The effect of the Mach number on transition is shown 
in Figures 8 and 9. Rewans rises monotonically as M increases in a parabolic way. 

6 
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Figure 6. Comparison of calculated transition Reynolds number, in a flat plate 
incompressible boundary layer, with experimental data, for various main stream 

turbulence energy levels 
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Figure 7. Transition Reynolds number, in a flat plate incompressible boundary layer versus the 
scale of the disturbances in the main stream 
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Figure 9. Transition Reynolds number versus Mach number with vari- 
ous length scales, for C, = 0.01 

4.3. Empirical correlations 

When plotting transition Reynolds number versus the turbulence intensity, length scale 
and Mach number, the distributions are sufficiently similar to one another to raise the 
possibility of finding an approximate correlation for the transition Reynolds number. 
Computations with combinations of ReL varying between 50 and 2000, C, varying between 
0.001 and 0.03 and A4 varying between 0.1 and 2 were performed. The following correlation 
is in good agreement with the computations 

with 

f(M) = 2045 +413M2 

The accuracy of the suggested formula is checked in Figure 10 where the calculated 
transition Reynolds number calculated by (62) is plotted against the computed Res;. A very 
high correlation of 0.99 is achieved. Rearrangement of equation (62) is possible, when the 
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definitions of C, and Re, are recalled: 

em 112 

ck =L 

e ,  112 ~,u,L,  pme2’L, 
C, Re, =--= = Re, 

u, pJC2 Pw 

where Re, i s  the turbulence Reynolds number of the main stream. Therefore 

Re,? = f ( M )  Rep‘364 (64) 

indicating that the transition Reynolds number depends on the free stream Mach number 
and the turbulence Reynolds number. 

The results are subject to the following limitations: 
(i) The correlations were obtained for Re, z 200. 
(ii) The method of locating the transition point, identifying it as the point where the 

friction coefficient begins to grow is frequently inaccurate. 
An improved procedure, based on the different slopes of log(Cf) versus log(Re,;) in 

laminar and turbulent flows, might improve the method, and widen the range of its 
effectiveness. 
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